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LETTER TO THE EDITOR 

Painlev6 analysis, rational and special solutions of variable 
coefficient Korteweg-de Vries equations 

Nick A Kudryashov and Vlad A Nikitin 
Department of Applied Mathematical Physics, Moscow Engineering Physics Institute, 31 
KashinkQe shosse, Moscow 115409, Russia 

Received 13 December 1993 

Abstract. The Painlev6 analysis of two vwiable coefficient Korteweg-de Vries equations are 
considered. The Painlev6 test for thwe equations is applied. The condition for the Painlev6 
property of the equations are found. Some rational and special solutions are presented. 

In this letter we want to study the Painlev6 property and to find rational solutions for two 
generalized Korteweg-de Vries equations 

(1) 3 2  
U1 + TU UZ + UXXX + u,f + ufx + fm = 0 

and 

Wt + 3 W 0 ,  + ox , ,  + Zwg, + 0,g + g,,, = 0 (2)  

where f = f ( x ,  t )  and g = g(x, t )  are smooth functions of x and t. 
Equations (1) and (2) at f = g = 0 are well known Korteweg-de Vries equations [l-21. 

Recently (1) and (2)  were considered at f = g = x A ( t )  + B(t)  [3,4], where A ( t )  and B ( t )  
are arbitrary functions. of f. It was shown that these equations have the pseudo potentials 
of Wahlquist-Estabrook and Lax pairs. 

Later we will investigate (1) and (2 )  on the Painlev6 property [5,6] and find some 
rational and special solutions. 

Firstly we will check these equations on the Painleve test following [7,8]. Let us seek 
solutions of (1) and (2) in the form 

where ( ~ ( x ,  t )  and @ ( x ,  t )  are the new functions of x and r ,  and uj and Wk are coefficients 
of expansions (3) and (4). 

Singular parts in (3) and (4) are handled taking into account the Painlev6 analysis of 
the usual Korteweg-de Vries equations 151. 
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Substituting (3) into (I), shows that resonances occur at j = -1, 3 and 4. The 
compatibility conditions at j = 3 and 4 are satisfied identically, therefore (1) possesses 
the Painlev6 test like the simple modified Korteweg-de Vries equation. 

Equation (2) can be investigated in a similar manner. This time we have observed 
resonance at k = -1, 4 and 6, which corresponds to resonances usual Korteweg-de Vries 
equation too. Coefficients wq and w, in the Laurent expansion (4) can be taken as arbitrary 
functions. Thus we can see that (2) also satisfies the Painlev6 test. 

Note that the singular manifold equation in both cases takes the form 

but in the second case the replacement f + g and 9 +. @ in (5) takes place. 

conditions for integrability of these equations [7,8]. 
Now let us consider the Painlev.4 property of (1) and (2), which are the sufficiency 

Let us take equations for the pseudopotentials of Wahlquist-Estabrook in the form [9, IO] 

(6) 

(7) 
a 

qt = -7$wx + qo + E X  + 48) 

and assume 

Then we obtain (2) at 

Ax = 0 At + Ag, = 0. 

Thus we obtain that (2)  has the pseudo potentiais corresponding to (6) and (7) at 

where C(t)  and D(t )  are arbitrary functions o f t  
Using the replacement 

W X  q -- 
11. 

At + AC(t) = 0. (14) 

We obtain that (2) has the Painlev.4 property at g = xC(t) + D(t )  and (2) is integrable 
in this case. The method of inverse scattering transform for the case of (2)  was presented 
in [4]. 
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Lax pairs for (1) at .f = x A ( t ) + B ( t )  in the form A K N C  problem [ll] were considered 

Using the truncated expansion [12, 131 
in [3]. As one might expect (I) also has the Painlev6 property in this case. 

one can write the following equalities for (1) and (2) 

U, + ;u2ux + uxxx + u,f + u f x  + f-. 

We can see from (17) and (18) that the Miura transformation 1141 

is the link between solutions of (I)  and (2)~at f = g. . 
Now let us show that (1) and (2)  at f = xA(l) + B ( t )  and g = xC(t) +oft) have sets 

At first let us consider the following equations 
of rational solutions. 

a + z,G({z,  XI) + fz, = ~ O  (20) 

where G(w) smooth functions or operators of w = {z; x ) .  
Now we need a small theorem. 

Theorem. Let (20) have the transformation [15]. 

m z,=rp, m c O  

at f = 0, then (20) has transformation in the form 

zx = ul," exp((m - l ) a ( t ) )  m < 0 a(t) = A ( t )  dt (22) s 
at f = x A ( t )  + B ( t ) .  
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Proof. Substituting (22) into (20) gives the equality 

(23) 
a (,"-l)o(r) m-I- a 

ax -(zi+z,G((z,x])+fz,) = m e  'px ax (Yf + V.&(((o, X I )  + fvx) 
which proves the theorem. 

Equation (5) is the pmial case of (20). 
It is well known [6-81 that equation (5) at f = 0 are invariant under Mobius group 

z = -~ l k - m n f . 0 .  
n q + k  

Obviously equation (5) at f # 0 is also invariant under transformation (24). 
It is also known [151 that (5) at f = 0 is invariant under transformation (21) at m = -1. 
Let us take 1151 

from (24), then taking into account (22) at m = -1 one can obtain the Backlund 
transformation in the form 

for (5) at f = xA(t) + B ( t ) .  

f ( x ,  t )  = xA(f) + B( t ) .  
This transformation can be used for finding rational solutions of (1) and (2) at 

Let us take the solution of (5) 

Without loss of generality we assume E = 0,. then (27) is a solution of (5) at f = xA(r). 
One can find 

x3 
(ol = -e-30 + CI (t)  (28) 3 

from transformation (26). Arbitrary function Ct( t )  is determined from (5). We find 

where 

Substituting (29) into (26) gives a,z(x, f). 
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where s(t) is determined by (30) and arbitrary function C*(t)  is determined from (5). 
This approach can be continued to find rp2(x, t )  (n > 3), by analogous Weiss [15]. 
The existence of a set of rational solutions of (5) also say things 'about the integrabdity 

Using rational solutions (27), (29) and (31) one can find the rational solutions of 

It is well known that the singular manifold equations are convenient for finding special 

For example, let us look for the special solutions of (1) taking into account the equation 

of this equation at f 

equations (1) and (2) at f = x A ( t )  + B(t)  if we use formulas (15) and (16). 

solutions of original equations [16-191. 

x A ( t )  + B(t) .  

2 

(or + 'pxrx - - 3y?, + fpx = E(t)p (32) 
2% 

which is found from (18), where E(t )  is arbitrary function of t .  
Let us take 

X 
~ ( x ,  t )  = r(t)F(rP) rP ='-. 

P(t) 

Substituting (33) into (31) gives the following equality 

Assuming in (34) 

~ 2dP 2 
~ x(0) = *P ;i; - f P  

one can obtain a number of solutions of (32) sc- ing the or.-~.ary differential equation 

(34) 

(35) 

Solutions of (36) can be found for f (x, t) which is determined from (35). 
In particular let us take 

x(6) = 26 

then f ( x ,  t )  in (1) takes the form 

where p(t) is an arbitrary function of t .  
Solution of the equation 

(37) 
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has the form 

Using (40) one can obtain solutions of (1) taking into account formula (15) 

where 

$($) = C3Ai(IP) +C4Bi($) (42) 

where C3 and C, are arbitrary constants. 
In the case f = 0 we find 

p ( t )  = (6t + CS)’ ’~  (43) 

from (38). 
Using (411, (42) and (43) one can obtain the self-similar solution of the modified 

Korteweg-de Vries equation in this case. 
In conclusion let us repeat the results of this letter. We have considered two generalized 

Korteweg-de Vries equations (I), (2) with variable coefficients and have studied these 
equations on the Painlevd test, which is the necessary condition for the integrability of 
equations. We have also shown that the original equations at f = xA( t )  + B ( t )  and g = 
x C ( t )  + D(r) have the Painled property and consequently satisfy the sufficiency condition 
of their integrability. For this case we have found non-local Backlund transformation, which 
generalized the Weiss hansformation. Using these, transformation sets of rational solutions 
were obtained. Finally we presented some special solutions of equation (1). 
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