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LETTER TO THE EDITOR

Painlevé analysis, rational and special solutions of variable
coefficient Korteweg—de Vries equations

Nick A Kudryashov and Viad A Nikitin

Department of Applied Mathematical Physics, Méscow Engingering Physics Institute, 31
Kashirskoe shosse, Moscow 115409, Russia

Received |3 December 1993

Abstract. The Painlevé analysis of two variable coefficient Korteweg—de Vries equations are
considered. The Painlevé test for these equations is applied. The condition for the Painlevé
property of the equations are found. Some rational and special solutions are presented.

In this letter we want o study the Painlevé property and to find rational solutions for two
generalized Korteweg—de Vries equations

e 3P0 + gy + 2 f 4+ Ufr + fre =0 (0
and
Wy + 3wy + Orxy + 208 + we g+ grxx =0 - )

where f = f(x,1) and g = g{x, ¢) are smooth functions of x and ¢.

Equations (1) and (2) at f = g = 0 are well known Korteweg—de Vries equations [1-2].
Recently (1) and (2) wére considered at f = g == xA{z) -+ B(¢) [3, 4], where A(¢) and B(z)
are arbitrary functions of ¢. It was shown that these equations have the pseudo potentials
of Wahlquist-Estabrook and Lax pairs.

Later we will investigate (1) and (2) on the. Painlevé property [5,6] and find some
rational and special solutions.

Firstly we will check these equations on the Pamlevé test following [7,8]. Let us seck
solutions of (1) and (2) in the form

w=y wph! : 3)
=0 ‘
w= ot ' - “

k=0

where ¢(x, #) and ¢(x, r) are the new functions of x and ¢, and u; and w, are coefiicients
of expansions {3) and (4).

Singular parts in (3) and (4) are handled taking into account the Painlevé analysis of
the usnal Korteweg—de Vries equations [5]. .
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Substituting (3) into (1) shows that resonances oceur at j = ~1, 3 and 4. The
compatibility conditions at j = 3 and 4 are satisfied identically, therefore (1) possesses
the Painlevé test like the simple modified Korteweg—de Vries equation.

Equation (2) can be investigated in a similar manner. This time we have observed
resonance at £k = —1, 4 and 6, which corresponds to resonances usual Korteweg—de Vries
equation too. Coefficients wy and @, in the Laurent expansion (4) can be taken as arbitrary
functions. Thus we can see that (2) also satisfies the Painlevé test.

Note that the singular manifold equation in both cases takes the form

2

3 .
Got‘z‘ﬁf’xxx";;f + fo. =0 (5)

but in the second case the replacement f = g and ¢ = ¢ in (5) takes place.

Now let us consider the Painlevé property of (1) and (2), which are the sufficiency
conditions for integrability of these equations [7,8].

Let us take equations for the pseudopotentials of Wahlquist—Estabrook in the form [9, 10]

2

gr =w-+ gz— + A | (6)
8
g =~ (@ + o+ g +4g) @
and assume
(gx)r = (@1)s. ity

Then we obtain (2) at
Ay =0 A+ Ag. =0 9
Thus we obtain that (2) has the pseudo potentiais conegponding to (6) and (7) at
glx, Y =xC@) + D) am

where C{¢) and D(¢) are arbitrary functions of ¢.
Using the replacement

g = —%‘f—" < (1)
in (6) and (7) we can find the Lax pair for (2) at condition (10).

Vs + 2@+ Y =0 (12)

¥ = 3¥lw, + C(O)] — Yulw + xCt) + D(@)] (13)

MEAC() =0 (14)

We obtain that (2) has the Painlevé property at g = xC(t) -+ D(z) and (2} is integrable
in this case. The method of inverse scattering transform for the case of (2) was presented
in {4].
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Lax pairs for (1} at f = xA(t)+B(¢) in the form AK NC problem [11] were considered
in [3). As one might expect (1) also has the Painlevé property in this case.
Using the truncated expansion [12, 13]

2 - ‘
g x| Y } - : - (15)
Po+e @
_ . - ¢_xx.r 3 fx
w={¢;x}= o 20 (16)

one can write the following equalities for (1) and (2)
U+ %uzux + e uef +ufs + foxx
] 2 1\ 3 3g2, ' ‘
-2 -2 — 17
dx [(%-Ho )é‘x] (%+¢m 20, "1 - W
wy + 3wy + Wryx + 208, -+ @58 + Lxax
(@532 ()3
do+¢ dx ¢ ) Bx\dpt@ ¢/ 0x

3 2
X (¢r T uxx — 29;;.\: -+ g?i’x) - (18)

‘We can see from (17) and (18) that the Miura transformation [14]

w=uy— (19)

is the link between solutions of (1} and (2) at f=g.

Now let us show that (1) and (2) at f = xA(t) 4+ B(t) and g = xC &)+ D(t) have sets
of rational solutions.

At first let us consider the following equations

2+ 2.6z, xP + fz =0 . (20)

where G(ew) smooth functions or operators of w = {z; x}.
Now we need a small theorem.

Theorem. Let (20) have the transformation [15-]‘
e = @y m<0 21
at f =0, then (20) has transformation in the form

Zz = ¢, exp((m — Da(t)) m <0 a(t) = f A(t) de (22)

at f = xAQt) + B(Q.
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Proof. Substituting (22} into (20) gives the equality

8

3 =Da o=
55 @ T w0 2D + fr) = melm DA la—x(qﬂ: +9:G({g, XD + fox) (23)
which proves the theorem.

Eqguation (5) is the partial case of (20).
It is well known [6-8] that equation (5) at f =0 are invariant under Mobius group

_lp+m
= Ry -k

Ik —mn #0. - (24)

Obviously equation (5) at f # 0 is also invariant under transformation (24).
It is also known [15] that (3) at f = Q is invariant under transformation (21) atm = —1.
Let us take [15]

1

2=~ : )
@
from (24), then taking into account (22) at m = —1 one can obtain the Bicklund
transformation in the form
2 -
Onpty = b=, (26)
©nx

for (5) at f = xA{t) + B(2).

This transformation can be used for finding rational solutions of (1) and (2) at
Flx. ) =xA(t) + B(2).

Let us take the solution of (3)

o = x exp{—a(?)} a(f) = j A()ds. 27
Without Ioss of generality we assume B = 0, then (27) is a solution of (5) at f = xA(1).
One can find
x3 ~3a
¢ = e +Ci(® (28)
from transformation (26). Arbitrary function Cy(z) is determined from (5). We find
23 ,
o = (? + 4,:) &5 1 125(r) (29)
where
s = f tA()e 340 g, (30)
Substituting (29) into (26) gives @z(x, 7).
5 2 2
vy = [(i_ + 4_x_t — E + Cz(r)) em3al) o (43:2 - E) s(r) — EB%(!)SZ(I)] a—2ul)
45 3 x X X

31)
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where 5(2) is determined by (30} and arbitrary function C5(¢) is determined from ({5).

This approach can be continued to find @,(x, ) (n > 3), by analogous Weiss [15].

The existence of a set of rational solutions of (5) also say things about the integrability
of this equation at f = xA(?) + B(¢).

Using rational solutions (27), (29) and (31) one can find the rational solutions of
equations (1) and (2) at f = xA(r) + B(¢) if we use formulas (15} and (16).

It is well known that the singular manifold equations are convenient for finding special
solutions of originail equations [16-19].

For example, et us look for the special solutions of (1) taking into account the equation -

32 - ’
B+ Orx — 52+ fpe = E(p (32)
Dx
which is found from (18), where E(¢) is arbitrary function of ¢.
Let us take ‘
olx, ) =r(OF@®) ¢ =—m. . (33)
p(t)

Substituting (33) into (31) gives the following equality

F,}t}ﬁ 3F§‘? de 2 . .
a— —— _ = R 4
F T 2m P TI? (34)

Assuming in (34)

d
x(®) = 9P — fp° : (35)

one can obtain a number of solutions of (32) solving the ordinary differential equation

Fpop 3F%,

R~ apE = XO): (36)

Solutions of (36) can be found for f(x, ) which is determined from (35).
In particular let us take '

¥(9) =28 : (37)

then f(x,t) in (1) takes the form

_E (e8P
f0) == (p - 2) (38)

where p{t) is an arbitrary function of ¢.
Solution of the equation

Fsge 3F%,

Fy  2F}

=29 - (39)
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has the form
¢
Foy=c [ veras. 40)
0
Using (40) one can obtain solutions of (1) taking into account formula (15)
-1
= —2¢f(!9)'2[¢o(f) +f v d’é] -"2 lniif(ﬂ) (41)
where
¥(B) = C3Ai(S) + Cs Bi(9) 42)

where Cs and Cy are arbitrary constants.
In the case f =0 we find

p@t) = (6t + C5)'7 (43)

from (38).

Using (41), (42) and (43) one can obtain the self-similar solutlon of the modified
Korteweg—de Vries equation in this case.

In conclusion let us repeat the results of this letter. We have considered two generalized
Korteweg~de Vries equations (1), (2) with variable coefficients and have studied these
equations on the Painlevé test, which is the necessary condition for the integrability of
equations. We have also shown that the original equations at f = xA(#) + B(z) and g =
xC{) + D(t) have the Painlevé property and consequently satisfy the sufficiency condition
of their integrability. For this case we have found non-local Bicklund transformation, which
generalized the Weiss transformation. Using these, transformation sets of rational solutions
were obtained. Finally we presented some special solutions of eguation (I).
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